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Lobe dynamics and space charge distribution in nonsteady electroconvection
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This paper deals with chaotic charge transport in finite amplitude electroconvection. In steady finite ampli-
tude electroconvection there is an inner region in the convection cell that remains free of charge. When the
liquid velocity is time dependent, as it is always observed in experiments, this region is no longer free of
charge. Lobe dynamics analysis is used to elucidate the mechanism of charge trapping.
[S1063-651%9901101-0

PACS numbdis): 47.52:+j, 47.65+a, 05.45.Gg

[. INTRODUCTION or not an ion is going to be trapped depending on the injec-
tion site and time. Trapping occurs only on discrete portions
Electroconvection in a liquid layer subjected to unipolar(band$ of the injector that drift following the lobe motion.
injection is a classical problem in electrohydrodynamicsAlso the statistics of trapped ions is better described using
(EHD) because of its theoretical and practical importancehis technique. This is important to progress in our under-
[1—4)]. In steady convective cells ions cannot enter the regio$tanding of the coupling between the charge distribution and
where the downward vertical liquid velocity is larger than the velocity field.
the upward ionic velocity. As a consequence, the cell is di-
vided into two regions, one charged and the other empty of Il. STATEMENT OF THE PROBLEM
charge, separated by a boundary referred to as the separatrix.
However, that solution is unstable and it is not observeq

in the laboratory. In effect, for any fluctuation that increases, jistanced. The liquid has permittivitye, viscosity 7, and

the velocity field the separatrix moves across a charged redensityp. lons in the liquid have a mobilitik and injection

gion and, as a result, ions are trapped. These trapped 0% ions occurs from one of the plane electrodes, where the

modify the fluid motion since the latter is driven by an elec- L ;
trical torque that depends on the detailed spatial distributioﬁharge density is considered to be constant and of \gjue

of the ions in the cell. As a consequence, the dynamics oI ns are removed from the system once they reach the oppo-
. " " ite electrode, the collector. A voltage differen¢es applied

nonsteady finite amplitude electroconvection depends cr Setween the electrodes
cially on the trapping and detrapping of ions'in th? ot.heryvise The charge density distribution that appears in the liquid
empty region. Due to t_he_ comple_XIty of the ion dlstr|but|o_n, at rest is potentially unstable. This can be easily understood
the response of the fluid is also highly complex, thus makm%onsidering the charge conservation equation
this problem not amenable to analytical solution and re-
course to sophisticated numerical methods is ne¢8ked aq

The use of tools from the theory of dynamical systems, E+V-[q(KE+ u]=0, D
i.e., Poincarenaps and Melnikov functions, has given useful
insights into partial aspects of this problg@-8|. In those  \hereq is the charge densitg the electric field, and the
works it was shown that a small periodic velocity field SU- jiquid velocity. Using Poisson’s equation
perimposed on the velocity field of steady finite amplitude
electroconvection gives rise to a chaotic distribution of
charge. This chaotic mixing of charge is due to the hetero- V-E=-, @
clinic tangle linked to the separatrix. Those studies were car-
ried out under the assumption of weak injection and for val-£q. (1) can be set
ues of the velocity field slightly above the ionic drift
velocity. dg K ,

In this work an additional tool, i.e., lobe dynami®, is TR )
used to obtain detailed information on the ion distribution in
the cell. We consider liquid velocities much larger than thewhered/dt=4d/dt+ (KE+u)-V is the total derivative along
ionic drift velocity, which are typical of finite amplitude a charge carrier path.
electroconvection. This has allowed us to determine whether Equation(3) is readily integrated to give

The geometry we consider in this paper is that of a liquid
ayer confined between two parallel metallic plates, separated
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Jo Z
9= THKqot/e: @
Therefore, the charge density decreases along a charge car-
rier trajectory and hence decreases from the injector. This is
a potentially unstable situation, analogous to that of a liquid
layer heated from below, the Rayleigh+Bed problem.

The linear stability analysis was done several years ago
[1,10] and three nondimensional parameters appear:

LA il M—l\f 5
_K7]’ _GV, _K p' ()

T represents the ratio of the destabilizing Coulomb force to X

the stabilizing viscous force; is a measure of the injection

strength, andV is the ratio of the hydrodynamic mobility to ~ FIG. 1. Phase portrait of the system in Eg1) for A>1. In all

the ionic mobility. For weak injectiol©<1, the liquid is set ~ figures,x andz are dimensionless, as defined in Sec. II.

into motion for TC?=222, whereas for a space charge lim- ) . )

ited current C>1) the instability threshold i = 160. ries. These trajectories are the solutions of the system of
A nonlinear stability analysis has already been dfgje ~ ordinary differential equations

We recall here the main issues of this analysis restricted to

the weak injection case. The mechanical equations may be dr

written in a nondimensional form, taking as units for dis- &_AUOHE' (10

tance, potential, charge density, and veloaityV, eV/d?,

andKV/d, respectively. The Navier-Stokes equation is thenin the weak injection case Coulomb repulsion can be ne-

glected and the electric field may be approximated Eby

=g,, the unit vector in thez direction. Equation(10) can

T [du

_ . —_y2

M2\ ot Fu-VutVp |=Viu+TdE, ©) then be written in the form of the Hamilton equations
where the last term is the Coulomb force. The fluid motion is dx oH
assumed to be in the form of a two-dimensional roll EZE' (113

=Aug, where makug|=1. Choosing a coordinate system

such that the injecting electrode coincides with the plane dz JH

0, the stream functio®’ is taken as = (11b
L [ X
\Ifzﬁ[l—cos(sz)]sm(T) () with H= —x+AW(x,2).
Some typical ion trajectories, which give an overall view
such that of the phase portrait of the system, are plotted in Fig. 1 for
A>1 (the nondimensional ionic drift velocity equals unity
v There are three equilibrium poini,, P,, andP5. P, and
UOX:E’ (8a) P, are saddle points where&s is a center. The bold line is
called the separatrix, or heteroclinic, and inside this line the
oW backward velocity of the liquid is greater than the ionic drift
Uoz=— - (8b)  velocity. lons cannot enter this region which remains free of

charge. The separatrix separates an outer region wiere

whereL is the half wavelength obtained from the linear sta-= C @nd an inner region wherg=0. Equation(9) is then
bility analysis. Multiplying Eq.(6) by ug, integrating over

the cross section of a roll, and neglecting the time deriva- J’ Und
. ) ; . . ) X o,dx dz
tives, i.e., in the viscous regime, we arrive at the following Q,
relation between the amplitud®and the parametér: A=-TC : 12
J(u0~V2u0)dx dz
J gquq-Edxdz
A=-T , (9)  where(, is the outer region. This expression can be trans-
f (Up- V2Up) dx dz formed using Eqs(8) into
where the integral in the numerator is a functiorAghrough A2 TCSA) (13)

Eqg. (1). For the evaluation of this integral it is most conve-

2
nient to analyze first the major features of the ion trajecto- f (Uo- V=Up)dx dz
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S(A) being the area of the inner region. Whéna-o the 1
separatrix tends to the borders of the cell &fé)—L X1, 7
giving the asymptotic behavior WP,

/

A%xTC. (14)
On the other hand, foA~1 the separatrix is an ellipse and

J6L(A—1)

SIA)= "5 A

(15

By substituting this last relationship into E@.3) it is found P,
that T, as a function ofA, reaches a minimum valug; for WP,
A=1.6 and thaf ;=0.93T.C, whereT. is the linear stability 2
threshold[4]. This minimum value represents a nonlinear “
Es

threshold of stability. Thus a hysteresis loop appears: In-
creasingTC? gives no motion until one reaches the linear
stability limit. Then the motion starts with a finite value of

A>1. DecreasingTCz, the motion does not cease until the FIG. 2. Invariant manifolds, heteroclinic tangle, and lobe dy-

value of the nonlinear stability limit is reached. namics for a periodic perturbation.
Experiments[11,12 show that the liquid motion is al-
ways time dependent and chaotic in nature. An attempt to dx
understand this feature was carried ouf6mh where the be- EZA(UUOXJFEX’ (163
havior of the carrier trajectories under periodic perturbations
of a steady roll, i.e.A(t)=Aq+ ¢ Sinwt, was studied for the dz
weak injection case. The existence of the so-called hetero- aZA(t)UoZJr = (16b

clinic tangle was proved, generating a chaotic separatrix

layer and therefore leading to a chaotic behavior of the sysis converted to the equivalent suspended autonomous system
tem.

More recently a numerical algorithm has been developed, dx
based on a superparticle method, that has been able to repro- dt =A(0)uoxt Ex, 173
duce all the characteristics of electroconvection, even the
chaotic behavior in weak and strong injecti¢f]. The dz
present paper is complementary to that work. Here we use a gt - AU+ By, (17b)
tool of the theory of dynamical systems, lobe dynamics, to
analyze in more detail the ion trajectories in nonsteady elec- do
troconvection. We first introduce the fundamental concepts T (170

of lobe dynamics in the case of a periodic perturbation. Then

we extend the analysis to pseudoperiodic perturbations, as gfme periodicity permits one to identify the planés 0 and
intermediate step before going to the more complex, but r€p=T,, with To=2m/w, so that a cylindrical state space
alistic, case of a chaotic signalt) supplied by the numeri- R?x St, whereSL=[0,T,) is the circle, is considered. We

cal simulation. Fi_nally, we consider the problem of the_ SUP-gefine a cross sectiah, ={(x,z,6)|#=1,} and the Poincare
pression of Hamiltonian chaos when Coulomb repulsion 'Sma 0

not negligible.

) Ps: Etog’zto, (18)
Ill. POINCARE MAP, HETEROCLINIC TANGLE,

AND LOBE DYNAMICS P.(X(to), 2(to) = (X(to+ To) Z(to+ o). (19)

A. Periodic perturbation In this way the Poincarenap of the flow is obtained by

Let us consider the system given in H§O) with A(t) associating with a point at a fixed phase of the periodic per-
=A,+ ¢ sinwt. Since the flow is unsteady, there exists theturbation its location under the evolution by the dynamical
possibility of having chaotic trajectories. Even a simple andequations after a period of the perturbation.
regular flow may induce a very complex charge distribution. While pointsP; andP,, which are hyperbolic, are fixed
This is due to the breaking of the separatrix, which gives ris@oints of the Poincarenap (technically speaking, they are
to the so-called heteroclinic tangle and stretches and foldeobus) the pointP; may disappear under nonconservative
the trajectories. The type of mixing so produced is differentperturbationg14], i.e., it is not a robust feature of the sys-
from molecular or turbulent diffusion and it has been re-tem. However, if the perturbation is conservati; re-
ferred to as laminar chaotic mixirig.3]. mains a fixed point of the Poincaneap. Neither is the sepa-

Two dynamical tools are very useful in the study of cha-ratrix robust. It may break under perturbation. In addition,
otic mixing: the Poincaremap and Melnikov's function. there exist invariant manifoldg/! and W associated with
First, the nonautonomous system the saddle points. Referring to Fig. Q/°(P,) is the set of
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pointsthat tend td®, whent—o and WY(P,) is the set of ishes at the walls. However, this is not the case in our prob-

points that tend td®; whent— —oo. lem. Although the velocity of the liquidloesvanish at the
Melnikov's function is defined as electrodes, the ions drift velocity is nonzexeenat the elec-
. trodes. This turns out to be an important distinctive feature of
M(to)ZJ [£1(rs()ga(re(t),t+1o) thg e_Iectroconvectlc_)n problem gnd many of its main charac-
—w teristics are determined by the intersections of the electrodes

with the lobes. Namely, charges injected at the intersections
— Fa(rg(1))ga(rs(t), t+ to)]1dt, (200 of the electrode with the lobes will become trapped inside
nghe inner region, whereas those injected outside the lobes
will travel directly from the injecting to the collecting elec-
dx, trode.
E=f1(x1,x2)+sgl(x1,x2,t), (219 In order to make more quantitatively precise the previous

qualitative conclusions, we define the residence time

dx R(Xg,to) as the number of iterations of the Poincarap that
2 fo(X1,X2) + £0(Xq, X0, 1) (21b) a particle injected at a poing at a timety needs to reach the
dt collector. As a consequence of the previous discussion, a

. . S . band structure foR(Xq,tg) as a function ok, with t, fixed,
andr(t) is the unperturbed separatrix. Melnikov’s function is to be expected. The value B{x.t,) is very sensitive to

ptermnlts Oinn? ton c;ﬁmpute :ht(-:-r(dlstia?cexbet_m{ee)nt;f:e mﬁmeI Shall changes ix,. This sensitivity is due to the fact that a
at any point on the separatr(x;(—to).xz(~to) ouy lobe intersects an infinity of other lobes in the inner region.

where the dynamical equations have been written in the for

M (tg) Figure 3 is intended to illustrate this situation. In Figa)3a
d(tg)=e 7 0 +0(&?). (22 particle is injected inside a lobe at location 1, gets into the
[f(rs(—to))| inner region after three iterations, gets out after six iterations,

gnd finally reaches the collector after ten iterations. Another
particle injected very close to the previous one would follow
the path shown in Fig. (8), reaching the collector after
eleven iterations. Finally, in Fig.(8 we show the path of a
particle that travels directly from the injector to the collector
without being trapped in the inner region.
We have computed the residence tiRg,,0) as a func-
M(t)=F(w)sinwt,, (23)  tion of the abscissa, of the point of injection, solving nu-
merically Eq.(10) with A(t) =Ay+ & sinwt. The values cho-
which means that the two manifolds intersect transverselgen for the parameters afg=10.5,¢=0.1, andT(=0.2 in
each period of the perturbation. Obviously the imagePhy  order to compare with the results that will be discussed be-
of any intersection point is another intersection point. low for a chaotic signal(t) obtained from numerical simu-
Lobes are defined as regions bounded by segments of thation under typical conditions of weak injection. Figure 4
two manifolds connecting two consecutive intersectionreveals the band structure in the residence time.
points[9]. Lobes map onto one another at each iteration of The Poincaramap can be defined for different values of
P.. Referring to Fig. 2E_5 maps ontoE_,, which maps the initial phase of the perturbation. All the maps so obtained
ontoE_;, which maps ont&,, which maps ontd,. Simi-  are topologically equivalent, but the actual position of the
larly, D_; maps ontoD,, which maps ontd;, etc. For a lobes drifts whert, is varied. Due to the periodicity of the
conservative system all the lobes have the same area. Unlegsrturbation, the lobes undergo a complete displacement to
otherwise stated, our discussion applies to the weak injectionccupy the position of the next lobe in the sequence when
case, so the system can be considered conservative. varies from 0 toT,. Referring to Fig. 2 again, the lobe
We define the inner region as one bounded by segmentienotedE _; becomes the lobE_, and so on. As a conse-
of WY(P,) andW3(P,) that intersects at poir. This point  quence of lobe drift, for any value af, in a certain interval
Q may be any of the intersection points of the two manifolds.around the origin, there should be an interval,{,) C[0,T)
All the points in lobeE,, and only those points, enter the such that particles injected at at timestye (tq,t5) will
inner region after one iteration of the Poincarap. Con- become trapped. To give a complete view of the dependence
versely, all the points in lobB leave the inner region at the of the residence time with respect to their variables we have
next iteration. As the invariant manifolds intersect at an in-plottedR(X,,tp) in Fig. 5. The values oR(X,,ty) are scaled
finity of points, a lobeE; intersects an infinity of lobeB; . according to a gray scale: The darker the point the higher the
The number of iterations in which a point is trapped in theresidence time.
inner region depends on these successive intersections and it The properties oR(Xg,ty) reflect the lobe dynamics. A
is very sensitive to the initial position of the point in the lobe. conspicuous characteristic of this function is self-similarity,
For a complete discussion of the details of lobe dynamicstesponsible for the pattern visible in the trapping region. As
the reader is referred to the paper by Rom-Kestaal. [9]. the manifolds are invariant sets of the Poincarap, their
Let us now return to the physical problem of charge transintersection is also an invariant set. This set has the structure
port. Our system is confined by the two electrodes. In otheof a Cantor set: Inside a lobe that intersects the injector, an
fluid mechanics problems the physical boundaries do not ininfinity of lobes intersect, contained in one another. This is
tersect the lobes since a usual condition is that velocity vanthe cause of self-similarity.

Here t, parametrizes the distance along the unperturbe
separatrix(see[ 9] for detailg.

When Melnikov's function has simple zeros the two
manifoldsW!(P,) andWS5(P,) intersect transversely. For a
perturbation of the formg(r,t)=sin(wt)G(r), Melnikov’'s
function can be expressed as
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FIG. 4. Band structure of the residence tiRgxy,to=0) as a
function of x, for a periodic perturbation witth,=10.5,¢=0.1,
andTy=0.2.
i ’\ 1 Xg at timety remains trapped in the inner region. Assuming
\3 inected that particles are being injected continuously, after many it-
X erations we will haveR(xq,t) —R(Xp) particles trapped in
the inner region that were injected & and t,—nT, n
collected 4
z
(©) 100
‘4
X\) injected X
FIG. 3. Sensitivity of the residence time with respect to the
injection point:(a) and (b) paths with trapping in the inner region
(c) path without trapping.
The functionR(xq,t,) also provides a means for comput-
ing the fraction of charge inside the inner region. Let us
define R(xo)zmintoE[O,To)R(xo,to). This value represents 1 el s . i -
the minimum number of iterations a particle needs to go /L 10
directly from the injector to the collector. For instance, in X
Fig. 3(c) this number would be seven. TheR(Xg,to) FIG. 5. Residence tim&R(x,,ty) for a periodic perturbation

—R(Xo) is the number of iterations that a particle injected atwith A;=10.5,£=0.1, andT,=0.2. Note the periodicity witl,.
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eZ*. Summing for allt,e[0,T,) yields the total number of
trapped particles coming fromy. Finally, summing for all
Xoe[0,L] we have, averaged over one period, the total num-

ber of trapped particles present in the system:

N =224, (R(X0.to) = R(X0)).

On the other hand, the total number of particles in the cell

(24

volume, averaged over one period,Nl?EtOEXOR(xo,to).

The fraction of particles in the inner region is then

22, (R(X0,t0) = R(X0))
2,2 x,R(Xo,to)

For the parameters corresponding to Fig. 5 we obigain

=0.012.

B. Pseudoperiodic perturbation

Before going to the case involving a continuous spectrum
it would be worthwhile to analyze the simpler case of a

(29

pseudoperiodic perturbation. Beigiéal.[15] (see als§16])

have studied the lobe dynamics for quasiperiodic perturba- ¢
tions of dynamical systems. They study time-dependent per:

5 25 50 75 100

turbations that can be decomposed in several frequencies, x10
that is, FIG. 6. Residence timR(x,,t,) for a pseudoperiodic perturba-
. tion [Eq. (31)] with A;=10.5 ande =0.05.
GO=glotot,...) (i=12. (26 O"EGEDIWINA
. . o
The equivalent suspended system will be now 0, — 03+2Ww_3, (30b)
1
dx;
H:fl(XllX2)+sgl(Xl’X2101!021 - .), (27@
dx where we have takefi,=27/w;. Although the lobes struc-
—2=f2(xl,x2)+sgz(x1,x2,61,02, ...), (27b ture still exists, it changes at each iteration of the map. Only
dt if all the frequencies are commensurable would the lobe dy-
namics be periodic.
%:l 279 As the features of the residence time are consequence of
dt ’ the lobe dynamicsR(xg,tp) is no longer expected to be a
periodic function oft,. We have compute®®(xq,ty) from
dé, the numerical solution of Eq10) with
T 1, (270

A Poincaresection can still be defined as

2&10:{()(,2,01,02, - )|0l: 0106[0,277/(1)1)}, (28)

A(t)=Ag+e(sinwit+sinwst). (31

For the purpose of comparison with the periodic perturbation
we have choseAy=10.5, £=0.05, and the two frequencies
related by w,/w,=g and (wi+ w,)/2=wy, where wq
=21/0.2 is the angular frequency considered in the periodic
case andy=(y/5—1)/2 is the golden mean. The results ob-
tained for the residence time are shown in Fig. 6. As it was

but thi_s sect_ion,is no Ion.ger two di.mensional. The_ COMe-gypectedR(Xo,t,) retains the pattern consequence of a well
sponding Poincarenap P, is also defined. After one itera- gefined lobe dynamics, but it is not a periodic functiortgf

tion of the map it is not only

The fraction 8 of trapped charge can be computed in the
same way as before, but taking into account many periods of

(X(to),2(t0))— (X(to+To), 2(to+ To)) (29 the base frequency. The value obtained foiffers from
but al that obtained for the periodic perturbation only after the third
ut also significant digit. It should be noticed that the value @f
depends on the strength of the perturbation. The result pre-
0, — O+ 277%1 (309 viously mentioned has been obtained when the maximum

1

value is the same for the periodic and the pseudoperiodic
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FIG. 7. (a) Time dependence ar®) power spectrum of a cha- ol " - . : 5 5 -
otic signalA(t) obtained in the weak injection regime f@=0.1 XL »
and T=25000. x 10

FIG. 8. Residence tim&(xg,t;) obtained from the amplitude

perturbations. Another possibility is choosirgsuch that A(t) shown in Fig. 7.
both perturbations have the same rms value. In this case we
obtain8=0.015 for the pseudoperiodic perturbation, a value IV. SUPPRESSION OF HAMILTONIAN CHAOS

higher than for the periodic one. Up to now we have focused on the weak injection regime

and the dynamical system has been assumed to be strictly
conservative, as in Secs. IllA and Il B, or approximately
conservative as in Sec. Il C. 7] it was shown that when
. . L . the injection strengti€ increases, so that Coulomb repulsion
Electroconvection due to unipolar injection is neither ajs g jonger negligible, the heteroclinic tangle should disap-
steady phenomenon nor a periodic one. Numerical simulgsear The effect of Coulomb repulsion on the phase portrait
F|ons[5] f|t. th|§ feature. A typ|ca_l tlme-dependG_n_t Slg_ﬁ‘é(ﬁ)_ of the system is shown in Fig. 9. Trajectories inside the inner
is shown in Fig. 7, corresponding to a weak injection simu-region spiral out, finally reaching the collector through a nar-

lation with C=0.1 andT=25000. The power spectrum is row channel neak=0. No trajectory originating at the in-
continuous and shows a broadened peak around a centjaktor enters the inner region.

frequencyf =5, which corresponds to a nondimensional pe-
riod Ty=0.2.

The residence tim&(xy,tg) has been computed consid-
ering a Poincarenap corresponding to the central frequency
of the peak. The calculation has been performed through the
entire simulation of the EHD problem, without neglecting
Coulomb repulsion between the ions. Therefore, the system
is not strictly conservative becau®- E=q>0. However,
for sufficiently small values o€ this should not substantially
modify the general features of the phase por{rajt

The presence of many frequenciesAft) makes the re-
sults for the residence time, shown in Fig. 8, fairly different
from those corresponding to a periodic perturbation. How-
ever,R(xg,ty) retains a certain structure, far from periodic in
the variablet,. A given position in the injector will inject X
charge that will pass through trapping and nontrapping epi-
sodes, depending on the time of injection. The fraction of F|G. 9. Effect of Coulomb repulsion on the phase portrait. The
trapped charge i8=0.0025, which has been calculated con-inner region is connected with the collecting electrode through a
sidering several periods of the base frequency. narrow channel near=0.

C. Chaotic signal A(t)
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Melnikov's function when Coulomb repulsion is taken V. CONCLUSION

into account was found to H& . .
He] In this paper we have analyzed the mechanisms that de-

M(tg) =F(w)(sinwty—2C). (32 termine the charge distribution in nonsteady finite amplitude
electroconvection. Lobe dynamics, a recent concept tied to
For C>0.5 the function has no zeros and the heteroclinicchaotic mixing in dynamical systems, has been applied to the
tangle disappears. The calculation leading to B2) was  cases of periodic and nonperiodic velocity amplitudes. In the
performed under the assumptién-1. However, in the ac-  perjodic case, there is a band structure in the injecting elec-
tual EHD problem the electroconvection regime is charactertrode, so that points inside certain intervals of the abscissa
ized by values ofA appreciably higher than the ionic drift jnject particles that become trapped in the inner region. This
velocity, so that the threshold= 0.5 should be taken only as pand structure changes periodically with the time of injec-
a rough estimation for the extinction of the heterocliniction. In the nonperiodic case, there remains a certain band
tangle. Numerical simulation of the electroconvection forstrycture that is not periodic. The fraction of trapped charge
different values ofC yields C=0.2 as the critical value jn a convective cell is computed from the residence time of
above which the heteroclinic tangle ceases to exist. No trapthe particles. A critical value has been found for the injection
ping of charge carrier occurs above that value and no struGtrength, above which Coulomb repulsion is strong enough
ture consequence of lobe dynamics is found any longer in thgy destroy the band structure. These ideas provide some in-
residence timeR(Xo, to). sight into the origin of the chaotic nature of electroconvec-
The suppression of the Hamiltonian chaos does not resulfion due to unipolar injection.

however, in a steady electroconvection solution. On the con-
trary, the liquid velocity remains time dependent and of cha-
otic nature[5]. Although the analysis presented in this paper ACKNOWLEDGMENT
deepens our comprehension of EHD chaos in the weak in-
jection case, this leaves the question of the ultimate origin of This work was carried out with financial support under

EHD chaos still open. Contract No. PB96-1375 from DGICYT.
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