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Lobe dynamics and space charge distribution in nonsteady electroconvection
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This paper deals with chaotic charge transport in finite amplitude electroconvection. In steady finite ampli-
tude electroconvection there is an inner region in the convection cell that remains free of charge. When the
liquid velocity is time dependent, as it is always observed in experiments, this region is no longer free of
charge. Lobe dynamics analysis is used to elucidate the mechanism of charge trapping.
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I. INTRODUCTION

Electroconvection in a liquid layer subjected to unipo
injection is a classical problem in electrohydrodynam
~EHD! because of its theoretical and practical importan
@1–4#. In steady convective cells ions cannot enter the reg
where the downward vertical liquid velocity is larger tha
the upward ionic velocity. As a consequence, the cell is
vided into two regions, one charged and the other empty
charge, separated by a boundary referred to as the separ

However, that solution is unstable and it is not observ
in the laboratory. In effect, for any fluctuation that increas
the velocity field the separatrix moves across a charged
gion and, as a result, ions are trapped. These trapped
modify the fluid motion since the latter is driven by an ele
trical torque that depends on the detailed spatial distribu
of the ions in the cell. As a consequence, the dynamics
nonsteady finite amplitude electroconvection depends
cially on the trapping and detrapping of ions in the otherw
empty region. Due to the complexity of the ion distributio
the response of the fluid is also highly complex, thus mak
this problem not amenable to analytical solution and
course to sophisticated numerical methods is needed@5#.

The use of tools from the theory of dynamical system
i.e., Poincare´ maps and Melnikov functions, has given use
insights into partial aspects of this problem@6–8#. In those
works it was shown that a small periodic velocity field s
perimposed on the velocity field of steady finite amplitu
electroconvection gives rise to a chaotic distribution
charge. This chaotic mixing of charge is due to the hete
clinic tangle linked to the separatrix. Those studies were c
ried out under the assumption of weak injection and for v
ues of the velocity field slightly above the ionic dri
velocity.

In this work an additional tool, i.e., lobe dynamics@9#, is
used to obtain detailed information on the ion distribution
the cell. We consider liquid velocities much larger than t
ionic drift velocity, which are typical of finite amplitude
electroconvection. This has allowed us to determine whe
PRE 591063-651X/99/59~1!/135~8!/$15.00
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or not an ion is going to be trapped depending on the inj
tion site and time. Trapping occurs only on discrete portio
~bands! of the injector that drift following the lobe motion
Also the statistics of trapped ions is better described us
this technique. This is important to progress in our und
standing of the coupling between the charge distribution
the velocity field.

II. STATEMENT OF THE PROBLEM

The geometry we consider in this paper is that of a liqu
layer confined between two parallel metallic plates, separa
a distanced. The liquid has permittivitye, viscosityh, and
densityr. Ions in the liquid have a mobilityK and injection
of ions occurs from one of the plane electrodes, where
charge density is considered to be constant and of valueq0 .
Ions are removed from the system once they reach the o
site electrode, the collector. A voltage differenceV is applied
between the electrodes.

The charge density distribution that appears in the liq
at rest is potentially unstable. This can be easily underst
considering the charge conservation equation

]q

]t
1“•@q~KE1u!#50, ~1!

whereq is the charge density,E the electric field, andu the
liquid velocity. Using Poisson’s equation

“•E5
q

e
, ~2!

Eq. ~1! can be set

dq

dt
52

K

e
q2, ~3!

whered/dt[]/]t1(KE1u)•“ is the total derivative along
a charge carrier path.

Equation~3! is readily integrated to give
135 ©1999 The American Physical Society
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q5
q0

11Kq0t/e
. ~4!

Therefore, the charge density decreases along a charge
rier trajectory and hence decreases from the injector. Th
a potentially unstable situation, analogous to that of a liq
layer heated from below, the Rayleigh-Be´nard problem.

The linear stability analysis was done several years
@1,10# and three nondimensional parameters appear:

T5
eV

Kh
, C5

q0d2

eV
, M5

1

K
Ae

r
. ~5!

T represents the ratio of the destabilizing Coulomb force
the stabilizing viscous force,C is a measure of the injectio
strength, andM is the ratio of the hydrodynamic mobility to
the ionic mobility. For weak injectionC!1, the liquid is set
into motion forTC2>222, whereas for a space charge lim
ited current (C@1) the instability threshold isT5160.

A nonlinear stability analysis has already been done@2#.
We recall here the main issues of this analysis restricte
the weak injection case. The mechanical equations may
written in a nondimensional form, taking as units for d
tance, potential, charge density, and velocityd, V, eV/d2,
andKV/d, respectively. The Navier-Stokes equation is th

T

M2S ]u

]t
1u•“u1“pD5¹2u1TqE, ~6!

where the last term is the Coulomb force. The fluid motion
assumed to be in the form of a two-dimensional rollu
5Au0 , where maxuu0u51. Choosing a coordinate syste
such that the injecting electrode coincides with the planz
50, the stream functionC is taken as

C5
L

2p
@12cos~2pz!#sinS px

L D ~7!

such that

u0x5
]C

]z
, ~8a!

u0z52
]C

]x
, ~8b!

whereL is the half wavelength obtained from the linear s
bility analysis. Multiplying Eq.~6! by u0 , integrating over
the cross section of a roll, and neglecting the time deri
tives, i.e., in the viscous regime, we arrive at the followi
relation between the amplitudeA and the parameterT:

A52T
E qu0•E dx dz

E ~u0•¹2u0! dx dz

, ~9!

where the integral in the numerator is a function ofA through
Eq. ~1!. For the evaluation of this integral it is most conv
nient to analyze first the major features of the ion trajec
ar-
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d

o

o

to
be

n

s

-

-

-

ries. These trajectories are the solutions of the system
ordinary differential equations

dr

dt
5Au01E. ~10!

In the weak injection case Coulomb repulsion can be
glected and the electric field may be approximated byE
5ez , the unit vector in thez direction. Equation~10! can
then be written in the form of the Hamilton equations

dx

dt
5

]H

]z
, ~11a!

dz

dt
52

]H

]x
, ~11b!

with H52x1AC(x,z).
Some typical ion trajectories, which give an overall vie

of the phase portrait of the system, are plotted in Fig. 1
A.1 ~the nondimensional ionic drift velocity equals unity!.
There are three equilibrium pointsP1 , P2 , andP3 . P1 and
P2 are saddle points whereasP3 is a center. The bold line is
called the separatrix, or heteroclinic, and inside this line
backward velocity of the liquid is greater than the ionic dr
velocity. Ions cannot enter this region which remains free
charge. The separatrix separates an outer region wheq
5C and an inner region whereq50. Equation~9! is then

A52TC

E
V2

u0zdx dz

E ~u0•¹2u0!dx dz

, ~12!

whereV2 is the outer region. This expression can be tra
formed using Eqs.~8! into

A25
TCS~A!

E ~u0•¹2u0!dx dz

, ~13!

FIG. 1. Phase portrait of the system in Eq.~11! for A.1. In all
figures,x andz are dimensionless, as defined in Sec. II.
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S(A) being the area of the inner region. WhenA→` the
separatrix tends to the borders of the cell andS(A)→L31,
giving the asymptotic behavior

A2}TC. ~14!

On the other hand, forA;1 the separatrix is an ellipse an

S~A!5
A6L~A21!

2pA
. ~15!

By substituting this last relationship into Eq.~13! it is found
that T, as a function ofA, reaches a minimum valueTf for
A51.6 and thatTf50.93TcC, whereTc is the linear stability
threshold@4#. This minimum value represents a nonline
threshold of stability. Thus a hysteresis loop appears:
creasingTC2 gives no motion until one reaches the line
stability limit. Then the motion starts with a finite value o
A.1. DecreasingTC2, the motion does not cease until th
value of the nonlinear stability limit is reached.

Experiments@11,12# show that the liquid motion is al
ways time dependent and chaotic in nature. An attemp
understand this feature was carried out in@6#, where the be-
havior of the carrier trajectories under periodic perturbatio
of a steady roll, i.e.,A(t)5A01« sinvt, was studied for the
weak injection case. The existence of the so-called het
clinic tangle was proved, generating a chaotic separa
layer and therefore leading to a chaotic behavior of the s
tem.

More recently a numerical algorithm has been develop
based on a superparticle method, that has been able to r
duce all the characteristics of electroconvection, even
chaotic behavior in weak and strong injection@5#. The
present paper is complementary to that work. Here we u
tool of the theory of dynamical systems, lobe dynamics,
analyze in more detail the ion trajectories in nonsteady e
troconvection. We first introduce the fundamental conce
of lobe dynamics in the case of a periodic perturbation. Th
we extend the analysis to pseudoperiodic perturbations, a
intermediate step before going to the more complex, but
alistic, case of a chaotic signalA(t) supplied by the numeri-
cal simulation. Finally, we consider the problem of the su
pression of Hamiltonian chaos when Coulomb repulsion
not negligible.

III. POINCARE´ MAP, HETEROCLINIC TANGLE,
AND LOBE DYNAMICS

A. Periodic perturbation

Let us consider the system given in Eq.~10! with A(t)
5A01« sinvt. Since the flow is unsteady, there exists t
possibility of having chaotic trajectories. Even a simple a
regular flow may induce a very complex charge distributio
This is due to the breaking of the separatrix, which gives r
to the so-called heteroclinic tangle and stretches and f
the trajectories. The type of mixing so produced is differe
from molecular or turbulent diffusion and it has been
ferred to as laminar chaotic mixing@13#.

Two dynamical tools are very useful in the study of ch
otic mixing: the Poincare´ map and Melnikov’s function.
First, the nonautonomous system
r
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dx

dt
5A~ t !u0x1Ex , ~16a!

dz

dt
5A~ t !u0z1Ez ~16b!

is converted to the equivalent suspended autonomous sy

dx

dt
5A~u!u0x1Ex , ~17a!

dz

dt
5A~u!u0z1Ez , ~17b!

du

dt
51. ~17c!

Time periodicity permits one to identify the planesu50 and
u5T0 , with T052p/v, so that a cylindrical state spac
R23S1, whereS15@0,T0) is the circle, is considered. W
define a cross sectionS t0

5$(x,z,u)uu5t0% and the Poincare´

map

P« : S t0
→S t0

, ~18!

P«„x~ t0!,z~ t0!…5„x~ t01T0!,z~ t01T0!…. ~19!

In this way the Poincare´ map of the flow is obtained by
associating with a point at a fixed phase of the periodic p
turbation its location under the evolution by the dynamic
equations after a period of the perturbation.

While pointsP1 andP2 , which are hyperbolic, are fixed
points of the Poincare´ map ~technically speaking, they ar
robust! the point P3 may disappear under nonconservati
perturbations@14#, i.e., it is not a robust feature of the sy
tem. However, if the perturbation is conservative,P3 re-
mains a fixed point of the Poincare´ map. Neither is the sepa
ratrix robust. It may break under perturbation. In additio
there exist invariant manifoldsWu and Ws associated with
the saddle points. Referring to Fig. 2,Ws(P2) is the set of

FIG. 2. Invariant manifolds, heteroclinic tangle, and lobe d
namics for a periodic perturbation.
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138 PRE 59A. T. PEREZ, R. CHICO´ N, AND A. CASTELLANOS
pointsthat tend toP2 when t→` and Wu(P1) is the set of
points that tend toP1 when t→2`.

Melnikov’s function is defined as

M ~ t0!5E
2`

`

@ f 1„rs~ t !…g2„rs~ t !,t1t0…

2 f 2„rs~ t !…g1„rs~ t !,t1t0…#dt, ~20!

where the dynamical equations have been written in the f

dx1

dt
5 f 1~x1 ,x2!1«g1~x1 ,x2 ,t !, ~21a!

dx2

dt
5 f 2~x1 ,x2!1«g2~x1 ,x2 ,t ! ~21b!

and rs(t) is the unperturbed separatrix. Melnikov’s functio
permits one to compute the distance between the manif
at any point on the separatrix„x1(2t0),x2(2t0)… through

d~ t0!5«
M ~ t0!

uf„rs~2t0!…u
1O~«2!. ~22!

Here t0 parametrizes the distance along the unpertur
separatrix~see@9# for details!.

When Melnikov’s function has simple zeros the tw
manifoldsWu(P1) andWs(P2) intersect transversely. For
perturbation of the formg(r,t)5sin(vt)G(r), Melnikov’s
function can be expressed as

M ~ t0!5F~v!sinvt0 , ~23!

which means that the two manifolds intersect transvers
each period of the perturbation. Obviously the image byP«

of any intersection point is another intersection point.
Lobes are defined as regions bounded by segments o

two manifolds connecting two consecutive intersect
points @9#. Lobes map onto one another at each iteration
P« . Referring to Fig. 2,E23 maps ontoE22 , which maps
ontoE21 , which maps ontoE0 , which maps ontoE1 . Simi-
larly, D21 maps ontoD0 , which maps ontoD1 , etc. For a
conservative system all the lobes have the same area. U
otherwise stated, our discussion applies to the weak injec
case, so the system can be considered conservative.

We define the inner region as one bounded by segm
of Wu(P1) andWs(P2) that intersects at pointQ. This point
Q may be any of the intersection points of the two manifol
All the points in lobeE0 , and only those points, enter th
inner region after one iteration of the Poincare´ map. Con-
versely, all the points in lobeD0 leave the inner region at th
next iteration. As the invariant manifolds intersect at an
finity of points, a lobeEi intersects an infinity of lobesD j .
The number of iterations in which a point is trapped in t
inner region depends on these successive intersections a
is very sensitive to the initial position of the point in the lob
For a complete discussion of the details of lobe dynam
the reader is referred to the paper by Rom-Kedaret al. @9#.

Let us now return to the physical problem of charge tra
port. Our system is confined by the two electrodes. In ot
fluid mechanics problems the physical boundaries do not
tersect the lobes since a usual condition is that velocity v
m

ds
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ishes at the walls. However, this is not the case in our pr
lem. Although the velocity of the liquiddoesvanish at the
electrodes, the ions drift velocity is nonzeroevenat the elec-
trodes. This turns out to be an important distinctive feature
the electroconvection problem and many of its main char
teristics are determined by the intersections of the electro
with the lobes. Namely, charges injected at the intersecti
of the electrode with the lobes will become trapped ins
the inner region, whereas those injected outside the lo
will travel directly from the injecting to the collecting elec
trode.

In order to make more quantitatively precise the previo
qualitative conclusions, we define the residence ti
R(x0 ,t0) as the number of iterations of the Poincare´ map that
a particle injected at a pointx0 at a timet0 needs to reach the
collector. As a consequence of the previous discussion
band structure forR(x0 ,t0) as a function ofx0 , with t0 fixed,
is to be expected. The value ofR(x0 ,t0) is very sensitive to
small changes inx0 . This sensitivity is due to the fact that
lobe intersects an infinity of other lobes in the inner regio
Figure 3 is intended to illustrate this situation. In Fig. 3~a! a
particle is injected inside a lobe at location 1, gets into
inner region after three iterations, gets out after six iteratio
and finally reaches the collector after ten iterations. Anot
particle injected very close to the previous one would follo
the path shown in Fig. 3~b!, reaching the collector afte
eleven iterations. Finally, in Fig. 3~c! we show the path of a
particle that travels directly from the injector to the collect
without being trapped in the inner region.

We have computed the residence timeR(x0,0) as a func-
tion of the abscissax0 of the point of injection, solving nu-
merically Eq.~10! with A(t)5A01« sinvt. The values cho-
sen for the parameters areA0510.5,«50.1, andT050.2 in
order to compare with the results that will be discussed
low for a chaotic signalA(t) obtained from numerical simu
lation under typical conditions of weak injection. Figure
reveals the band structure in the residence time.

The Poincare´ map can be defined for different values
the initial phase of the perturbation. All the maps so obtain
are topologically equivalent, but the actual position of t
lobes drifts whent0 is varied. Due to the periodicity of the
perturbation, the lobes undergo a complete displacemen
occupy the position of the next lobe in the sequence whet0
varies from 0 toT0 . Referring to Fig. 2 again, the lob
denotedE23 becomes the lobeE22 and so on. As a conse
quence of lobe drift, for any value ofx0 in a certain interval
around the origin, there should be an interval (t1 ,t2),@0,T0)
such that particles injected atx0 at times t0P(t1 ,t2) will
become trapped. To give a complete view of the depende
of the residence time with respect to their variables we h
plottedR(x0 ,t0) in Fig. 5. The values ofR(x0 ,t0) are scaled
according to a gray scale: The darker the point the higher
residence time.

The properties ofR(x0 ,t0) reflect the lobe dynamics. A
conspicuous characteristic of this function is self-similari
responsible for the pattern visible in the trapping region.
the manifolds are invariant sets of the Poincare´ map, their
intersection is also an invariant set. This set has the struc
of a Cantor set: Inside a lobe that intersects the injector
infinity of lobes intersect, contained in one another. This
the cause of self-similarity.



t-
u
s
g
in

a

ng
it-

he
n
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The functionR(x0 ,t0) also provides a means for compu
ing the fraction of charge inside the inner region. Let
define R(x0)5mint0P[0,T0)R(x0 ,t0). This value represent
the minimum number of iterations a particle needs to
directly from the injector to the collector. For instance,
Fig. 3~c! this number would be seven. ThenR(x0 ,t0)
2R(x0) is the number of iterations that a particle injected

FIG. 3. Sensitivity of the residence time with respect to t
injection point:~a! and ~b! paths with trapping in the inner regio
~c! path without trapping.
s

o

t

x0 at time t0 remains trapped in the inner region. Assumi
that particles are being injected continuously, after many
erations we will haveR(x0 ,t0)2R(x0) particles trapped in
the inner region that were injected atx0 and t02nT, n

FIG. 4. Band structure of the residence timeR(x0 ,t050) as a
function of x0 for a periodic perturbation withA0510.5, «50.1,
andT050.2.

FIG. 5. Residence timeR(x0 ,t0) for a periodic perturbation
with A0510.5,«50.1, andT050.2. Note the periodicity witht0 .
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PZ1. Summing for allt0P@0,T0) yields the total number o
trapped particles coming fromx0 . Finally, summing for all
x0P@0,L# we have, averaged over one period, the total nu
ber of trapped particles present in the system:

N̂5S t0
Sx0

„R~x0 ,t0!2R~x0!…. ~24!

On the other hand, the total number of particles in the c
volume, averaged over one period, isN5S t0

Sx0
R(x0 ,t0).

The fraction of particles in the inner region is then

b5
S t0

Sx0
„R~x0 ,t0!2R~x0!…

S t0
Sx0

R~x0 ,t0!
. ~25!

For the parameters corresponding to Fig. 5 we obtainb
50.012.

B. Pseudoperiodic perturbation

Before going to the case involving a continuous spectr
it would be worthwhile to analyze the simpler case of
pseudoperiodic perturbation. Beigieet al. @15# ~see also@16#!
have studied the lobe dynamics for quasiperiodic pertur
tions of dynamical systems. They study time-dependent
turbations that can be decomposed in several frequen
that is,

gi~ t !5gi~v1t,v2t, . . . ! ~ i 51,2!. ~26!

The equivalent suspended system will be now

dx1

dt
5 f 1~x1 ,x2!1«g1~x1 ,x2 ,u1 ,u2 , . . . !, ~27a!

dx2

dt
5 f 2~x1 ,x2!1«g2~x1 ,x2 ,u1 ,u2 , . . . !, ~27b!

du1

dt
51, ~27c!

du2

dt
51, ~27d!

] .

A Poincarésection can still be defined as

Su10
5$~x,z,u1 ,u2 , . . . !uu15u10P@0,2p/v1!%, ~28!

but this section is no longer two dimensional. The cor
sponding Poincare´ map P« is also defined. After one itera
tion of the map it is not only

„x~ t0!,z~ t0!…→„x~ t01T0!,z~ t01T0!… ~29!

but also

u2 → u212p
v2

v1
, ~30a!
-

ll

a-
r-

es,

-

u3 → u312p
v3

v1
, ~30b!

]

where we have takenT052p/v1 . Although the lobes struc-
ture still exists, it changes at each iteration of the map. O
if all the frequencies are commensurable would the lobe
namics be periodic.

As the features of the residence time are consequenc
the lobe dynamics,R(x0 ,t0) is no longer expected to be
periodic function oft0 . We have computedR(x0 ,t0) from
the numerical solution of Eq.~10! with

A~ t !5A01«~sinv1t1sinv2t !. ~31!

For the purpose of comparison with the periodic perturbat
we have chosenA0510.5, «50.05, and the two frequencie
related by v1 /v25g and (v11v2)/25v0 , where v0
52p/0.2 is the angular frequency considered in the perio
case andg5(A521)/2 is the golden mean. The results o
tained for the residence time are shown in Fig. 6. As it w
expected,R(x0 ,t0) retains the pattern consequence of a w
defined lobe dynamics, but it is not a periodic function oft0 .
The fractionb of trapped charge can be computed in t
same way as before, but taking into account many period
the base frequency. The value obtained forb differs from
that obtained for the periodic perturbation only after the th
significant digit. It should be noticed that the value ofb
depends on the strength of the perturbation. The result
viously mentioned has been obtained when the maxim
value is the same for the periodic and the pseudoperio

FIG. 6. Residence timeR(x0 ,t0) for a pseudoperiodic perturba
tion @Eq. ~31!# with A0510.5 and«50.05.
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perturbations. Another possibility is choosing« such that
both perturbations have the same rms value. In this case
obtainb50.015 for the pseudoperiodic perturbation, a va
higher than for the periodic one.

C. Chaotic signalA„t…

Electroconvection due to unipolar injection is neither
steady phenomenon nor a periodic one. Numerical sim
tions@5# fit this feature. A typical time-dependent signalA(t)
is shown in Fig. 7, corresponding to a weak injection sim
lation with C50.1 andT525 000. The power spectrum i
continuous and shows a broadened peak around a ce
frequencyf 55, which corresponds to a nondimensional p
riod T050.2.

The residence timeR(x0 ,t0) has been computed consid
ering a Poincare´ map corresponding to the central frequen
of the peak. The calculation has been performed through
entire simulation of the EHD problem, without neglectin
Coulomb repulsion between the ions. Therefore, the sys
is not strictly conservative because“•E5q.0. However,
for sufficiently small values ofC this should not substantially
modify the general features of the phase portrait@7#.

The presence of many frequencies inA(t) makes the re-
sults for the residence time, shown in Fig. 8, fairly differe
from those corresponding to a periodic perturbation. Ho
ever,R(x0 ,t0) retains a certain structure, far from periodic
the variablet0 . A given position in the injector will inject
charge that will pass through trapping and nontrapping e
sodes, depending on the time of injection. The fraction
trapped charge isb50.0025, which has been calculated co
sidering several periods of the base frequency.

FIG. 7. ~a! Time dependence and~b! power spectrum of a cha
otic signalA(t) obtained in the weak injection regime forC50.1
andT525 000.
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IV. SUPPRESSION OF HAMILTONIAN CHAOS

Up to now we have focused on the weak injection regi
and the dynamical system has been assumed to be st
conservative, as in Secs. III A and III B, or approximate
conservative as in Sec. III C. In@7# it was shown that when
the injection strengthC increases, so that Coulomb repulsio
is no longer negligible, the heteroclinic tangle should disa
pear. The effect of Coulomb repulsion on the phase port
of the system is shown in Fig. 9. Trajectories inside the in
region spiral out, finally reaching the collector through a n
row channel nearx50. No trajectory originating at the in
jector enters the inner region.

FIG. 8. Residence timeR(x0 ,t0) obtained from the amplitude
A(t) shown in Fig. 7.

FIG. 9. Effect of Coulomb repulsion on the phase portrait. T
inner region is connected with the collecting electrode throug
narrow channel nearx50.
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Melnikov’s function when Coulomb repulsion is take
into account was found to be@7#

M ~ t0!5F~v!~sinvt022C!. ~32!

For C.0.5 the function has no zeros and the heterocli
tangle disappears. The calculation leading to Eq.~32! was
performed under the assumptionA;1. However, in the ac-
tual EHD problem the electroconvection regime is charac
ized by values ofA appreciably higher than the ionic dri
velocity, so that the thresholdC50.5 should be taken only a
a rough estimation for the extinction of the heteroclin
tangle. Numerical simulation of the electroconvection
different values ofC yields C50.2 as the critical value
above which the heteroclinic tangle ceases to exist. No t
ping of charge carrier occurs above that value and no st
ture consequence of lobe dynamics is found any longer in
residence timeR(x0 ,t0).

The suppression of the Hamiltonian chaos does not re
however, in a steady electroconvection solution. On the c
trary, the liquid velocity remains time dependent and of c
otic nature@5#. Although the analysis presented in this pap
deepens our comprehension of EHD chaos in the weak
jection case, this leaves the question of the ultimate origin
EHD chaos still open.
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V. CONCLUSION

In this paper we have analyzed the mechanisms that
termine the charge distribution in nonsteady finite amplitu
electroconvection. Lobe dynamics, a recent concept tied
chaotic mixing in dynamical systems, has been applied to
cases of periodic and nonperiodic velocity amplitudes. In
periodic case, there is a band structure in the injecting e
trode, so that points inside certain intervals of the absc
inject particles that become trapped in the inner region. T
band structure changes periodically with the time of inje
tion. In the nonperiodic case, there remains a certain b
structure that is not periodic. The fraction of trapped cha
in a convective cell is computed from the residence time
the particles. A critical value has been found for the injecti
strength, above which Coulomb repulsion is strong enou
to destroy the band structure. These ideas provide some
sight into the origin of the chaotic nature of electroconve
tion due to unipolar injection.
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